科学研究
Scientific research
您所在的位置:首页>科学研究

Co-Salient Object Detection From Multiple Images

Abstract

In this paper, we propose a novel method to discover co-salient objects from a group of images, which is modeled as a linear fusion of an intra-image saliency (IaIS) map and an inter-image saliency (IrIS) map. The first term is to measure the salient objects from each image using multiscale segmentation voting. The second term is designed to detect the co-salient objects from a group of images. To compute the IrIS map, we perform the pairwise similarity ranking based on an image pyramid representation. A minimum spanning tree is then constructed to determine the image matching order. For each region in an image, we design three types of visual descriptors, which are extracted from the local appearance, e.g., color, color co-occurrence and shape properties. The final region matching problem between the images is formulated as an assignment problem that can be optimized by linear programming. Experimental evaluation on a number of images demonstrates the good performance of the proposed method on co-salient object detection.


Paper

Hongliang Li, Fanman Meng, and King N. Ngan, "Co-Salient Object Detection From Multiple Images", IEEE Transactions on Multimedia, vol. 15, no. 8, pp. 1896-1909, 2013. [PDF]

Results
MulCos2.jpg
Evaluation results for two ICoseg image groups. Top and Bottom: Some results for image groups Red Sox and Cheetah, respectively. Row 1: Some original images. Rows 2–6: Results for FT, SR, SER, RC, and Our method, respectively.
MulCos3.jpg
Experimental results for image pairs. (a): Original image pairs, i.e., llama, elephant, hawksbill. (b)-(f): Results by CA [17], SER [10], RC [19], IPCO [1], and our method.

MulCos4.jpg

Downloads

1. Source Code (MATLAB)
 
   Source code will be downloaded from Here

Acknowledgments
 

This work was supported in part by NSFC (No. 61271289), National High Technology Research and Development Program of China (863 Program, No. 2012AA011503), and The Ph.D. Programs Foundation of Ministry of Education of China (No. 20110185110002).


联系方式:

邮编:611731

实验室地址:成都市高新区(西区)西源大道2006号

电子科技大学信息与通信工程学院

技术支持:成都今网科技

版权所有 © 智能视觉信息处理与通信实验室, 2018